A Topographic Drag Closure Built on an Analytical Base Flux
نویسنده
چکیده
Topographic drag schemes depend on grid-scale representations of the average height, width, and orientation of the subgrid topography. Until now, these representations have been based on a combination of statistics and dimensional analysis. However, under certain physical assumptions, linear analysis provides the exact amplitude and orientation of the drag for arbitrary topography. The author proposes a computationally practical closure based on this analysis. Also proposed is a nonlinear correction for nonpropagating base flux. This is patterned after existing schemes but is better constrained to match the linear solution because it assumes a correlation between mountain height and width. When the correction is interpreted as a formula for the transition to saturation in the wave train, it also provides a way of estimating the vertical distribution of the momentum forcing. The explicit subgrid height distribution causes a natural broadening of the layers experiencing the forcing. Linear drag due to simple oscillating flow over topography, which is relevant to ocean tides, has almost the same form as for the stationary atmospheric problem. However, dimensional analysis suggests that the nonpropagating drag in this situation is mostly due to topographic length scales that are small enough to keep the steady-state assumption satisfied.
منابع مشابه
A sub-grid scale closure for nonlinear hillslope sediment transport models
[1] Hillslope sediment transport models express the sediment flux at a point as a function of some topographic attributes of the system, such as slope, curvature, soil thickness, etc., at that point only (referred here as “local” transport models) or at an appropriately defined vicinity of that point (referred here as “nonlocal” transport models). Typically, topographic attributes are computed ...
متن کاملCritical Drag Investigation for an Axisymmetric Projectile with Choked Base Bleed at High-Subsonic and Transonic Regime Using SST K-? Model
In the following paper, the effects of a choked jet exhausted from the base of a non-lifting body on its total and base drags at sub-sonic and transonic regimes has been numerically investigated. Having surveyed the results of some turbulence models and after comparing with experimental results, an appropriate turbulence model i.e. SST K-?, has been chosen and this model has been used in the su...
متن کاملFilm cooling effectiveness in single row of holes: First moment closure modeling
The present article focuses on the evaluation of a first-moment closure model applicable to film cooling flow and heat transfer computations. The present first-moment closure model consists of a higher level of turbulent heat flux modeling in which two additional transport equations for temperature variance kθ and its dissipation rate εθ are ...
متن کاملEXPERIMENTAL INVESTIGATION OF DRAG REDUCTION ON AHMED MODEL USING A COMBINATION OF ACTIVE FLOW CONTROL METHODS
Aerodynamic drag is an important factor in vehicles fuel consumption. Pressure drag which is the main component of total drag is a result of boundary layer separation from vehicle surface. Flow control methods are applied to avoid or at least delay separation. Depending upon whether these methods consume energy to control the flow or not, they are called active or passive control methods. In th...
متن کاملMethods for Controlling Vorticity Generation at the Triple Contact Line for Wake and Drag Mitigation: An Analytical and Experimental Investigation
In previous investigations, the moving contact line has been reported as a significant source of vorticity. In the context of ship hydrodynamics, this subject is of significant interest as vorticity generated by the countless bubbles along a ship hull likely contribute to increased drag and wake signatures. In order to understand these phenomena better and potentially increase ship efficiency a...
متن کامل